A recent download of TensorFlow provided the following: Could not find a version that front-end the requirements tensorflow

After a bit of research, it turned out that Python 3.7 was not supported by TensorFlow in 2019, so I was forced to revert back to 3.6, which was a simple step. You open the Anaconda Prompt, type Conda Install Python =3.6, wait for a prompt (y/n), type y, wait for a few minutes, and the prompt done will indicate that Python 3.7 has fallen back to Python 3.6.



— — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — line — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — —
August 15, 2020
Some netizens left comments or chatted with me that this method was not successful. Through communication, I learned that many people actually did not use domestic mirror images. So we need to add domestic images first.
Conda source changes:
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --set show_channel_urls yes
The PIP source:
Add parameters after PIP -i https://pypi.tuna.tsinghua.edu.cn/simple code>
example: PIP install -i https://pypi.tuna.tsinghua.edu.cn/simple pandas
In fact, many laptops have Gpus (I was cheated by someone before that the LAPTOP GPU does not support tensorFlow-GPU, ha ha ha), you can check my new blog to see if your computer supports GPU, and then install the GPU version, because the acceleration of the GPU version of TensorFlow is very obvious. Windows10 system installs tensorflow-gpu (CUDA Toolkit, CUDNN) under anaconda
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- line -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
Read More:
- Anaconda builds a new environment and installs sklearn, numpy and other modules
- numpy.core.umath How to solve the problem of failed to import
- AttributeError: module ‘keras.backend‘ has no attribute ‘eager‘
- CONDA 3090 install tenslow GPU report error importerror: libcublas.so .9.0: cannot open shared object file
- Anaconda opens Navigator to report an error and a web page appears Navigator Error An unexpected error occurred on Navigator start-up Report
- Conda HTTP 000 CONNECTION FAILED for url
- Error condahtterror: http 000 connection failed
- To solve the problem of importerror when installing tensorflow: libcublas.so . 10.0, failed to load the native tensorflow runtime error
- CONDA install torch error
- Using pip to install tensorflow: tensorflow — is not a supported wheel on this platform
- Condahttperror:HTTP000 Connection Failed for URL https://repo.anaconda.com/pkgs/main/win-6
- (Solved) pytorch error: RuntimeError: cuDNN error: CUDNN_STATUS_EXECUTION_FAILED (install cuda)
- Tensorflow installation and uninstall (Anaconda version)
- CONDA HTTP error is prompted when Anaconda prompt is installed and updated
- Anaconda installation opencv Python error solution
- Building wheel for wrapt (setup.py) … error
- After tensorflow installation, an error occurred while importing: importerror: DLL load failed: the specified module could not be found
- Mpi4py installation error: cannot compile MPI programs. Check your configuration!!!
- No matching distribution found for tensorflow
- Tensorflow operation report error modulenotfounderror: no module named ‘tensorflow. Python. Types’ solution