1. When the training code is CLF = SVC (probability = false), predict_ The prompt is as follows: attributeerror: predict_ proba is not available when probability=False;
Parameter explanation: probability boolean type; optional; default is false
Decide whether to enable probability estimation. We need to add this parameter when training fit () model, and then we can use the related method: predict_ Proba and predict_ log_ proba
2. The score function can be used to get the score, and the score is the accuracy rate;
#coding=utf-8
import pandas as pd
import xlrd
import os
import matplotlib.pyplot as plt
import numpy as np
from sklearn.svm import SVC
X = np.array ([[-1,-1],[-2,-1],[1,1],[2,1],[-1,1],[-1,2],[1,-1],[1,-2]])
y = np.array ([0,0,1,1,2,2,3,3])
# y= np.array ([1,1,2,2,3,3,4,4])
# clf = SVC(decision_ function_ shape=”ovr”,probability=True)
clf = SVC(probability=True)
#clf = SVC(probability=False)
clf.fit (X, y)
print( clf.decision_ Function (x))
”
for n classification, there will be n classifiers. Then, any two classifiers can work out a classification interface. In this way, the decision_ Function (), for any sample, there will be n * (n-1) / 2 values.
Any two classifiers can work out a classification interface, and then this value is the distance from the classification interface.
I think this function is for statistical drawing. It is most obvious for binary classification. It is used to count how far each point is from the hyperplane, to intuitively represent data in space, to draw hyperplane and interval plane, etc.
decision_ function_ When the shape is “ovr”, it has 4 values, and when it is “ovo”, it has 6 values.
”’
print( clf.predict (X))
print( clf.predict_ Proba (x)) # this is the score, the score of each classifier, take the class corresponding to the maximum score.
print( clf.score (x, y))
# drawing
plot_ step=0.02
x_ min, x_ max = X[:, 0].min() – 1, X[:, 0].max() + 1
y_ min, y_ max = X[:, 1].min() – 1, X[:, 1].max() + 1
xx, yy = np.meshgrid ( np.arange (x_ min, x_ max, plot_ step),
np.arange (y_ min, y_ max, plot_ step))
Z = clf.predict (np.c_ [ xx.ravel (), yy.ravel ()) (?) predicts the points on the coordinate style to draw the interface. In fact, the final boundary of the class is the boundary line of the interface.
Z = Z.reshape( xx.shape )
cs = plt.contourf (xx, yy, Z, cmap= plt.cm.Paired )
plt.axis (“tight”)
class_ names=”ABCD”
plot_ colors=”rybg”
for i, n, c in zip(range(4), class_ names, plot_ colors):
idx = np.where (y = = I) # I is 0 or 1, two classes
are defined plt.scatter (X[idx, 0], X[idx, 1],
c=c, cmap= plt.cm.Paired ,
label=”Class %s” % n)
plt.xlim (x_ min, x_ max)
plt.ylim (y_ min, y_ max)
plt.legend (loc=’upper right’)
plt.xlabel (‘x’)
plt.ylabel (‘y’)
plt.title (‘Decision Boundary’)
plt.show ()
Read More:
- Usage of Python dropout
- In Python sys.argv Usage of
- The usage of Matlab function downsample
- np.unique Usage of ()
- Usage of NVL in SQL
- Aapt2 error: check logs for details
- Visio2007 usage record
- Yield usage in Python
- [xampp] error: Apache shutdown unexpected. 11:00:50 [Apache] solution details
- Principle and usage of feof ()
- Usage and examples of three important functions of tidyr package in R language: gather, spread and separate
- The usage of typing.union in Python
- source, ~/.bashrc, ~/.bash_ Profile details
- Some file crashing failed, see logs for details
- Opencv, CV2. Puttext() usage
- Tensorflow with tf.Session The usage of () as sess
- The difference and usage of insmod and modprobe
- The function and usage of argc and argv in C language
- Raise in Oracle_APPLICATION_Error Usage
- Usage of pause function in MATLAB