There are two reasons for this problem
first, the GPU computing power and the python version do not match
Second, the server uses a combination of graphics cards with different computing power
on the first point, pytorch no longer supports graphics cards with computing power less than 3.7 after 1.3.0. You can reinstall the lower version of pytorch. The corresponding version can be found in the following link:
torch, torchvision historical version download
common graphics card computing power is as follows
GPU Compute Capability
NVIDIA TITAN RTX 7.5
Geforce RTX 2080 Ti 7.5
Geforce RTX 2080 7.5
Geforce RTX 2070 7.5
Geforce RTX 2060 7.5
NVIDIA TITAN V 7.0
NVIDIA TITAN Xp 6.1
NVIDIA TITAN X 6.1
GeForce GTX 1080 Ti 6.1
GeForce GTX 1080 6.1
GeForce GTX 1070 6.1
GeForce GTX 1060 6.1
GeForce GTX 1050 6.1
GeForce GTX TITAN X 5.2
GeForce GTX TITAN Z 3.5
GeForce GTX TITAN Black 3.5
GeForce GTX TITAN 3.5
GeForce GTX 980 Ti 5.2
GeForce GTX 980 5.2
GeForce GTX 970 5.2
GeForce GTX 960 5.2
GeForce GTX 950 5.2
GeForce GTX 780 Ti 3.5
GeForce GTX 780 3.5
GeForce GTX 770 3.0
GeForce GTX 760 3.0
GeForce GTX 750 Ti 5.0
GeForce GTX 750 5.0
GeForce GTX 690 3.0
GeForce GTX 680 3.0
GeForce GTX 670 3.0
GeForce GTX 660 Ti 3.0
GeForce GTX 660 3.0
GeForce GTX 650 Ti BOOST 3.0
GeForce GTX 650 Ti 3.0
GeForce GTX 650 3.0
GeForce GTX 560 Ti 2.1
GeForce GTX 550 Ti 2.1
GeForce GTX 460 2.1
GeForce GTS 450 2.1
GeForce GTS 450* 2.1
GeForce GTX 590 2.0
GeForce GTX 580 2.0
GeForce GTX 570 2.0
GeForce GTX 480 2.0
GeForce GTX 470 2.0
GeForce GTX 465 2.0
GeForce GT 740 3.0
GeForce GT 730 3.5
GeForce GT 730 DDR3,128bit 2.1
GeForce GT 720 3.5
GeForce GT 705* 3.5
GeForce GT 640 (GDDR5) 3.5
GeForce GT 640 (GDDR3) 2.1
GeForce GT 630 2.1
GeForce GT 620 2.1
GeForce GT 610 2.1
GeForce GT 520 2.1
GeForce GT 440 2.1
GeForce GT 440* 2.1
GeForce GT 430 2.1
GeForce GT 430* 2.1
GPU Compute Capability
Tesla K80 3.7
Tesla K40 3.5
Tesla K20 3.5
Tesla C2075 2.0
Tesla C2050/C2070 2.0
On the second point, if you make an error in the mmcv framework, recompile mmcv according to the computing power of your graphics card. Take two graphics cards with computing power of 6.1 and 7.5 as examples to compile. The commands are as follows:
TORCH_CUDA_ARCH_LIST="6.1;7.5" pip install mmcv-full == {mmcv_version} -f https://download.openmmlab.com/mmcv/dist/{cuda version}/{pytorch version}/index.html
Among them, CUDA version and pytorch version are replaced by your version, such as cud101, torch 1.7.0
for specific corresponding information, please refer to GitHub of mmcv
Read More:
- CUDA Error: no kernel image is available for execution on device
- Tensorflow 2.1.0 error resolution: failed call to cuinit: CUDA_ ERROR_ NO_ DEVICE: no CUDA-capable device is detected
- RuntimeError: cuda runtime error (100) : no CUDA-capable device is detected at /opt/conda/conda-bld/
- FCOS No CUDA runtime is found, using CUDA_HOME=’/usr/local/cuda-10.0′
- (Solved) pytorch error: RuntimeError: cuDNN error: CUDNN_STATUS_EXECUTION_FAILED (install cuda)
- RuntimeError: CUDA error: device-side assert triggered
- Resolved failed call to cuinit: CUDA_ ERROR_ NO_ DEVICE
- RuntimeError: reciprocal is not implemented for type torch.cuda.LongTensor
- Error: cudaGetDevice() failed. Status: CUDA driver version is insufficient for CUDA runtime version
- RuntimeError: cuDNN error: CUDNN_ STATUS_ EXECUTION_ Failed solutions
- (29)RuntimeError: cuda runtime error (999)
- RuntimeError: CUDA out of memory. Tried to allocate 600.00 MiB (GPU 0; 23.69 GiB total capacity)
- RuntimeError: cuda runtime error (801) : operation not supported at ..
- linux/tensorflow: failed call to cuDevicePrimaryCtxRetain: CUDA_ERROR_INVALID_DEVICE
- CUDA error: device-side assert triggered
- Runtimeerror using Python training model: CUDA out of memory error resolution
- torch.cuda.is_ Available() returns false
- Successfully solved runtimeerror: CUDA runtime error (30)
- [Solved] VMware Workstation startup error: Unable to open kernel device…
- device no response, device descriptor read/64, error -71