RuntimeError: CUDNN_STATUS_EXECUTION_FAILED [How to Solve]

The error is as follows:

Traceback (most recent call last):
  File "main.py", line 23, in <module>
    t.train()
  File "c:\Paper Code\RCAN-master-Real\RCAN_TrainCode\code\trainer.py", line 51, in train
    sr = self.model(lr, idx_scale)
  File "C:\Anaconda3\envs\pytorch0.4.0\lib\site-packages\torch\nn\modules\module.py", line 491, in __call__
    result = self.forward(*input, **kwargs)
  File "c:\Paper Code\RCAN-master-Real\RCAN_TrainCode\code\model\__init__.py", line 54, in forward
    return self.model(x)
  File "C:\Anaconda3\envs\pytorch0.4.0\lib\site-packages\torch\nn\modules\module.py", line 491, in __call__
    result = self.forward(*input, **kwargs)
  File "c:\Paper Code\RCAN-master-Real\RCAN_TrainCode\code\model\rcan.py", line 107, in forward
    x = self.sub_mean(x)
  File "C:\Anaconda3\envs\pytorch0.4.0\lib\site-packages\torch\nn\modules\module.py", line 491, in __call__
    result = self.forward(*input, **kwargs)
  File "C:\Anaconda3\envs\pytorch0.4.0\lib\site-packages\torch\nn\modules\conv.py", line 301, in forward
    self.padding, self.dilation, self.groups)
RuntimeError: CUDNN_STATUS_EXECUTION_FAILED

Before code modification:

if __name__ == '__main__':
    torch.manual_seed(args.seed)
    checkpoint = utility.checkpoint(args)

    if checkpoint.ok:
        loader = data.Data(args)
        model = model.Model(args, checkpoint)
        loss = loss.Loss(args, checkpoint) if not args.test_only else None
        t = Trainer(args, loader, model, loss, checkpoint)
        while not t.terminate():
            t.train()
            t.test()

        checkpoint.done()

After code modification

if __name__ == '__main__':
    torch.backends.cudnn.enabled = False
    torch.manual_seed(args.seed)
    checkpoint = utility.checkpoint(args)

    if checkpoint.ok:
        loader = data.Data(args)
        model = model.Model(args, checkpoint)
        loss = loss.Loss(args, checkpoint) if not args.test_only else None
        t = Trainer(args, loader, model, loss, checkpoint)
        while not t.terminate():
            t.train()
            t.test()

        checkpoint.done()

Running ~ ~


Read More: