Take a look at your custom loss function. First define a class and then pass in parameters:
loss=tf.keras.losses.MeanSquaredError(y_true,y_pred) #wrong
m=tf.keras.losses.MeanSquaredError()
loss=m(y_true,y_pred) #right
Read More:
- How to Fix TypeError: Cannot cast array data from dtype(‘float64‘) to dtype(‘<U32‘)….
- RuntimeError: Found dtype Double but expected Float”
- Python error TypeError:can ‘t convert complex to float
- Error importing keras in jupyter Notebook: modulenotfounderror: no module named ‘keras’ solution
- ImportError: cannot import name ‘to_categorical‘ from ‘keras.utils‘
- After the model is instantiated by keras, the result returns nonetype
- Keras:KeyError:‘Failed to format this callback filepath:{val_loss:.4f}.h5. Reason: \‘val_loss\‘‘
- TypeError(‘Keyword argument not understood:‘, ‘***‘) in keras.models load_model
- Tensorflow ValueError: Failed to convert a NumPy array to a Tensor
- Android studio auto import auto import
- Error in testing keras
- Keras saves save() and save in the model_ weights()
- Summary of three methods for pandas to convert dict into dataframe
- failed to render and update auto layout status for….
- AttributeError: module ‘keras.backend‘ has no attribute ‘eager‘
- opencv cvtColor dtype issue(error: (-215) )
- JSON and map convert to each other (using fastjson)
- [Solved] RuntimeError: Expected object of scalar type Float but got scalar type Double for argument #2 ‘mat1‘
- How to Fix Spring Boot OTS parsing error: Failed to convert WOFF 2.0
- Keras Model AttributeError:’str‘ object has no attribute ’call‘