1. Problems
When I was practicing using pytorch today, I prepared to use GPU, and the following errors occurred:
RuntimeError: Input type (torch.FloatTensor) and weight type (torch.cuda.FloatTensor) should be the same
2. Code (adjusted and can run correctly)
import torch.optim
import torchvision.datasets
# Preparing the data set
from torch import nn
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from time import time
print(torch.cuda.is_available())
train_data = torchvision.datasets.CIFAR10(root="./dataset",
train=True,
transform=torchvision.transforms.ToTensor(),
download=True)
test_data = torchvision.datasets.CIFAR10(root="./dataset",
train=False,
transform=torchvision.transforms.ToTensor(),
download=True)
print("training_set_data_length: %d" % len(train_data))
print("Test set data length: %d" % len(test_data))
# Load data using DataLoader
train_data_loader = DataLoader(train_data, batch_size=64)
test_data_loader = DataLoader(test_data, batch_size=64)
# Build the neural network (in a separate .py file)
class Net(nn.Module):
def __init__(self) -> None:
super(Net, self).__init__()
self.model = nn.Sequential(
nn.Conv2d(3, 32, 5, 1, 2),
nn.MaxPool2d(2, 2),
nn.Conv2d(32, 32, 5, 1, 2),
nn.MaxPool2d(2, 2),
nn.Conv2d(32, 64, 5, 1, 2),
nn.MaxPool2d(2, 2),
nn.Flatten(),
nn.Linear(1024, 64),
nn.Linear(64, 10)
)
def forward(self, x):
x = self.model(x)
return x
# Create a network model
net = Net()
# Only the model, data, and loss function can run on the GPU
# if torch.cuda.is_available():
# net = net.cuda()
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
net.to(device)
# Loss function
loss_fn = nn.CrossEntropyLoss()
# if torch.cuda.is_available():
# loss_fn = loss_fn.cuda()
loss_fn.to(device)
# Optimizer
learning_rate = 1e-2 # 0.01
optimizer = torch.optim.SGD(net.parameters(), lr=learning_rate)
# Set the parameters of the training network
# Record the number of training sessions
total_train_step = 0
# Record the number of training sessions
total_test_step = 0
# Number of training rounds
epoch = 10
start_time = time()
writer = SummaryWriter("./logs/train")
for i in range(epoch):
print("------Round %d of training ------" % (i + 1))
# Training steps
for data in train_data_loader:
imgs, targets = data
if torch.cuda.is_available():
imgs, targets = imgs.cuda(), targets.cuda()
# imgs.to(device)
# targets.to(device)
outputs = net(imgs)
loss = loss_fn(outputs, targets)
# Optimizer optimization model
optimizer.zero_grad()
loss.backward()
optimizer.step()
total_train_step += 1
if total_train_step % 100 == 0:
end_time = time()
print(end_time - start_time)
print("training_step: {}, loss: {}".format(total_train_step, loss.item())) # .item() can convert the tensor type to a number
writer.add_scalar("train_loss", loss.item(), total_train_step)
# Test Steps
total_test_loss = 0
total_accuracy = 0
with torch.no_grad(): # Zero out the gradient when testing. No need to adjust the gradient for optimization
for data in test_data_loader:
imgs, targets = data
if torch.cuda.is_available():
imgs, targets = imgs.cuda(), targets.cuda()
# imgs.to(device)
# targets.to(device)
outputs = net(imgs)
loss = loss_fn(outputs, targets)
total_test_loss += loss.item()
accuracy = (outputs.argmax(1) == targets).sum()
total_accuracy += accuracy
print("loss on the overall test set: {}".format(total_test_loss))
print("Percent correct on the overall test set: {}".format(total_accuracy/len(test_data)))
writer.add_scalar("test_loss", total_test_loss, total_test_step)
writer.add_scalar("test_accuracy", total_accuracy/len(test_data), total_test_step)
total_test_step += 1
# Save the model
# torch.save(net.state_dict(), "model_{}.pth".format(i))
# print("Round {} training model saved".format(i))
writer.close()
3. Solutions
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
for data in train_data_loader:
imgs, targets = data
if torch.cuda.is_available():
imgs, targets = imgs.cuda(), targets.cuda()
# imgs.to(device)
# targets.to(device)
outputs = net(imgs)
In the above code, IMGs and targets cannot use .to(device)
, so the input type (torch.Floattensor) will appear after use. If it is not GPU type, it can only be used in another way:
if torch.cuda.is_available():
imgs, targets = imgs.cuda(), targets.cuda()
This can solve the problem that the input and weight types do not match.
4. Reference
Read More:
- [Solved] torchsummary Error: RuntimeError: Input type (torch.cuda.FloatTensor) and weight type (torch.F
- [Solved] Using summary to View network parameters Error: RuntimeError: Input type (torch.cuda.FloatTensor)
- Pytorch torch.cuda.FloatTensor Error: RuntimeError: one of the variables needed for gradient computation has…
- Python RuntimeError: Expected 4-dimensional input for 4-dimensional weight [32, 1, 5, 5]
- [Solved] RuntimeError: Numpy is not available (Associated Torch or Tensorflow)
- RuntimeError: Failed to register operator torchvision::_new_empty_tensor_op. +torch&torchversion Version Matching
- Pytorch Error: RuntimeError: value cannot be converted to type float without overflow: (0.00655336,-0.00
- [Solved] Pytorch Error: RuntimeError: expected scalar type Double but found Float
- [Solved] RuntimeError: expected scalar type Long but found Float
- Pytorch Error: runtimeerror: expected scalar type double but found float
- [Solved] RuntimeError: cuda runtime error (100) : no CUDA-capable device is detected at
- Python: Torch.nn.functional.normalize() Function
- torch.nn.functional.normalize() Function Interpretation
- Here is the difference and connection of Torch. View (), Transpose (), and Permute ()
- How to Solve Pychart configuration import torch error
- [Solved] Torch Build Module Error: NotImplementedError
- [Solved] Pytorch-geometric Error: No module named torch_sparse
- [Solved] RuntimeError: CUDA error: device-side assert triggered CUDA kernel errors
- [Solved] Backtrader_plotting Error: RuntimeError: Unexpected data type
- RuntimeError: CUDA error: an illegal memory access was encountered