Copy the placeholder this way:
input_placeholder = tf.placeholder(tf.int32,
[batch_size, sequence_len],
name="input")
copy_input = tf.Variable(initial_value=input_placeholder,
trainable=False)
Then this sentence reports an error:
sess.run(tf.global_variables_initializer())
Solution:
copy the placeholder in this way:
copy_input = tf.get_variable(
initializer=tf.constant(0, shape=[batch_size, sequence_len]),
name="copy_placeholder",
dtype=tf.int32, trainable=False)
copy_input.assign(input_placeholder)