def load_datasets():
train_file = r'D:\CNMU\AI\1X\datasets\train_catvnoncat.h5'
test_file = r'D:\CNMU\AI\1X\datasets\test_catvnoncat.h5'
train_datasets = h5py.File(train_file,'r')
# train_datasets.keys()
# <KeysViewHDF5 ['list_classes', 'train_set_x', 'train_set_y']>
train_set_x = np.array(train_datasets['train_set_x'])
train_set_y = np.array(train_datasets['train_set_y'])
test_datasets = h5py.File(test_file,'r')
test_set_x = np.array(test_datasets['test_set_x'])
test_set_y = np.array(test_datasets['test_set_y'])
classes = np.array(test_datasets['list_classes'])
train_set_y = train_set_y.reshape(1,train_set_x.shape[0])
test_set_y = test_set_y.reshape(1,test_set_x.shape[0])
return train_set_x,train_set_y,test_set_x,test_set_y,classes
Here, return returns five arrays and a tuple of five elements;
train_set_x,train_set_y,test_set_x,test_set_y,classes = load_datasets()
With this assignment, you can call each array directly