Kalman filtering
In learning the principle of Kalman filtering, I hope to deepen the understanding of the formula and principle through python.
Take notes
import numpy as np
import math
import matplotlib.pyplot as plt
'''
dynam_params:The dimensions of the state space.
measure_params: the dimension of the measure value;
control_params: the dimension of the control vector, default is 0.
'''
class Kalman(object):
'''
INIT KALMAN
'''
def __init__(self, dynam_params, measure_params,control_params = 0,type = np.float32):
self.dynam_params = dynam_params
self.measure_params = measure_params
self.control_params = control_params
# self
### The following should all be able to determine the dimension based on the input dimension value
if(control_params ! = 0):
self.controlMatrix = np.mat(np.zeros((dynam_params, control_params)),type) # control matrix
else:
self.controlMatrix = None
self.errorCovPost = np.mat(np.zeros((dynam_params, dynam_params)),type) # P_K
self.errorCovPre = np.mat(np.zeros((dynam_params, dynam_params)),type) # P_k-1
self.gain = np.mat(np.zeros((dynam_params, measure_params)),type) # K
self.measurementMatrix = np.mat(np.zeros((measure_params, dynam_params)),type)
self.measurementNoiseCov = np.mat(np.zeros((measure_params, measure_params)),type)
self.processNoiseCov = np.mat(np.zeros((dynam_params, dynam_params)),type)
self.transitionMatrix = np.mat(np.zeros((dynam_params, dynam_params)),type)
self.statePost = np.array(np.zeros((dynam_params, 1)),type)
self.statePre = np.array(np.zeros((dynam_params, 1)),type)
# The diagonal is initialized to 1
## np.diag_indices returns the index of the main diagonal as a tuple
### F state transfer matrix diagonal initialized to 1
row,col = np.diag_indices(self.transitionMatrix.shape[0])
self.transitionMatrix[row,col] = np.array(np.ones(self.transitionMatrix.shape[0]))
### R measure noise Diagonal initialized to 1
row,col = np.diag_indices(self.measurementNoiseCov.shape[0])
self.measurementNoiseCov[row,col] = np.array(np.ones(self.measurementNoiseCov.shape[0]))
### Q Process noise Diagonal initialized to 1
row,col = np.diag_indices(self.processNoiseCov.shape[0])
self.processNoiseCov[row,col] = np.array(np.ones(self.processNoiseCov.shape[0]))
def predict(self,control_vector = None):
'''
PREDICT
'''
# Predicted value
F = self.transitionMatrix
x_update = self.statePost
B = self.controlMatrix
if(self.control_params == 0):
x_predict = F * x_update
else:
x_predict = F * x_update + B * control_vector
self.statePre = x_predict
# P_k
P_k_minus = self.errorCovPost
Q = self.processNoiseCov
self.errorCovPre = F * P_k_minus * F.T + Q
self.statePost = self.statePre
self.errorCovPost = self.errorCovPre
return x_predict
def correct(self,mes):
'''
CORRECT
'''
# K update
K = self.gain
P_k = self.errorCovPost
H = self.transitionMatrix
R = self.measurementNoiseCov
K = P_k * H.T * np.linalg.inv(H * P_k * H.T + R)
self.gain = K
# Calculate the estimated value of State
x_predict = self.statePre
x_update = x_predict + K * (mes - H * x_predict)
self.statePost = x_update
# P_k update
P_pre = self.errorCovPre
P_k_post = P_pre - K * H * P_pre
self.errorCovPost = P_k_post
return x_update
if __name__ == '__main__':
pos = np.array([
[10, 50],
[12, 49],
[11, 52],
[13, 52.2],
[12.9, 50]], np.float32)
kalman = Kalman(2,2)
kalman.measurementMatrix = np.mat([[1,0],[0,1]],np.float32)
kalman.transitionMatrix = np.mat([[1,0],[0,1]], np.float32)
kalman.processNoiseCov = np.mat([[1,0],[0,1]], np.float32) * 1e-4
kalman.measurementNoiseCov = np.mat([[1,0],[0,1]], np.float32) * 1e-4
kalman.statePre = np.mat([[6],[6]],np.float32)
#kalman.statePre = np.mat([[6],[6]],np.float32)
for i in range(len(pos)):
mes = np.reshape(pos[i,:],(2,1))
y = kalman.predict()
print("before correct mes",mes[0],mes[1])
x = kalman.correct(mes)
print (kalman.statePost[0],kalman.statePost[1])
print (kalman.statePre[0],kalman.statePre[1])
print ('measurement:\t',mes[0],mes[1])
print ('correct:\t',x[0],x[1])
print ('predict:\t',y[0],y[1])
print ('='*30)