By statement
from keras.utils import to_categorical
Errors are reported when importing category, as follows:
importerror: cannot import name ‘to_ categorical’ from ‘keras.utils’
Change the import code as follows:
from tensorflow.keras.utils import to_categorical
Read More:
- Resolve importerror: cannot import name ‘TF_ utils’
- ImportError: cannot import name ‘SummaryWriter‘ from partially initialized module ‘torch.utils.tenso
- [error reported] [Python] [Matplotlib] importerror: failed to import any QT binding
- Problem solving module ‘ tensorflow.compat . V2 ‘has no attribute’ contrib ‘and importerror cannot import name’ auto ‘
- [Keras] ImportError: Failed to import pydot. You must install pydot and graphviz for `pydotprint` to
- ImportError: numpy.core.multiarray failed to import
- ImportError: cannot import name ‘cross_validation’ from ‘sklearn’
- Error importing keras in jupyter Notebook: modulenotfounderror: no module named ‘keras’ solution
- Resolve importerror: cannot import name ‘totensor’ error
- ImportError: cannot import name ‘SparkSession‘
- How to solve “import cv2 failed ImportError: DLL load fail: Cannot find the specified module” in Anaconda environment
- ImportError: cannot import name ‘calinski_harabaz_score‘ from ‘sklearn.metrics‘
- When VS code imported Cv2, an error ImportError: numpy.core.multiarray failed to import; There are no mistakes in using the Spyder
- Scrapy runs a crawler with an error importerror: cannot import name suppress
- Finally solved the importError: DLLload failed: the specified module could not be found when import matplotlib.pyplot
- Solve the problem of raspberry pie using GStreamer. Importerror: cannot import name XXX introspection typelib not found
- Solved! The new version of statsmodels has the problem of importerror: cannot import name ‘factorial’
- Jumper notebook, import numpy, prompt “importerror: DLL load failed: unable to find the specified module”
- from ._ NNLS import NNLS importerror: DLL load failed: the specified module was not found.
- Keras saves save() and save in the model_ weights()